Advanced Process Controller (APC) for controlling steam power plant


#1

"Control of Steam Power Plant is very big job need Care to fulfill the appropriate degree of stability and dependability for such this big system "

In many countries, plants have to fulfill specific requirements of the electrical grid (such as frequency control, dispatch control, automatic generation control (AGC), and so on) and are paid accordingly, based on their performance.

Under these circumstances, it is extremely important for the plant to have the capability to precisely follow the provided load set point. Within the plant, proper coordination of the turbine and boiler operation is of extraordinary importance. This coordination is realized by the unit control, which generates set points for the boiler and turbine to keep the desired load set point while maintaining the desired operating pressures and temperatures.

Control System Basics

One of the most critical control circuits is the control of the main steam pressure. Steam pressure is controlled by adjusting the fuel flow to the boiler in the case of a power-controlled turbine. Therefore, controlling fuel flow originates from the non-self-stable control circuit (Figure 1).

Advanced%20Process%20Controller%20(APC)%20for%20controlling%20steam%20power%20plant

Let’s assume that the load set point of the turbine PG,SP shown in Figure 1, as well as the fuel flow to the boiler, is constant and the boiler load is somewhat higher than the set point of the electrical load. In this case, the boiler will produce more steam than the turbine consumes. Therefore, the main steam pressure PMS will increase until the high-pressure (HP) bypass or the safety valves open.

Under this operating scenario, this control circuit is not self-stable. The pressure will only be stable at one single point, namely, where the boiler load exactly matches the turbine load. But pressure starts to drift away from its set point with every minor system disturbance. Furthermore, there is a time delay of several minutes between the operation of the actuator (fuel flow) and the controlled variable (main steam pressure) response. A very responsive control system design is required to quickly sense and respond to accurately control steam pressure.

Highly sophisticated control concepts are needed to achieve very good control performance in any steam plant. However, translating these control concepts into a functioning and reliable system usually requires very sophisticated and complex control loops that are extremely labor-intensive to commission and maintain. In many cases, model-based control logic is used in the plant controls, and during commissioning, actual unit performance tests are required in order to measure the static and dynamic response of the unit and determine the corresponding model parameters. These tests can be time-consuming and very expensive.

Also, the more accurate the control performance targets, the more detailed the models used in the control structure must be. But as more detailed and accurate parameters are required, even more tests become necessary, and the overall commissioning process thus becomes more and more expensive. Compounding the testing dilemma, when coordinating tests with the load dispatcher, the unit must be operated at a specific load and might not be operated at the most beneficial load point required to tune the controls.

There are situations under which a conventional control system design cannot respond to system changes. For example, if the dynamic response of the boiler changes over time, control performance will degrade. The simple proportional, integral, derivative (PID)-correction controller has to take corrective actions more and more frequently due to the model inaccuracies. These inaccuracies compound and will eventually produce a negative effect on the unit’s stability and flexibility.

As a solution to these shortcomings, Siemens Energy has developed an advanced process controller (APC) for controlling the main steam pressure of a steam power plant by adjusting the fuel flow as an actuator. One major advantage of this controller is that it requires much less controls tuning and lower operating during commissioning. In fact, there are only two major parameters that need to be adjusted. When compared to a conventional controller, the commissioning time can be reduced by more than half. The remainder of this article describes actual test results taken from a steam plant start-up that validates our claims.