All About Cooling Tower

Cooling towers are heat removal devices used to transfer process waste heat to the atmosphere. Cooling towers may either use the evaporation of water to remove process heat and cool the working fluid to near the wet-bulb air temperature or rely solely on air to cool the working fluid to near the dry-bulb air temperature. Common applications include cooling the circulating water used in oil refineries, chemical plants, power plants and building cooling.

The towers vary in size from small roof-top units to very large hyperboloid structures (as in Image 1) that can be up to 200 metres tall and 100 metres in diameter, or rectangular structures (as in Image 2) that can be over 40 metres tall and 80 metres long. Smaller towers are normally factory-built, while larger ones are constructed on site. They are often associated with nuclear power plants in popular culture.

A hyperboloid cooling tower was patented by Frederik van Iterson and Gerard Kuypers in 1918.

Classification by use
Cooling towers can generally be classified by use into either HVAC (air-conditioning) or industrial duty as suggested by Rantael, Rogellito and Stronghold, April in the book The Mystery of Cooling Towers Unfolded.

HVAC

An HVAC cooling tower is a subcategory rejecting heat from a chiller. Water-cooled chillers are normally more energy efficient than air-cooled chillers due to heat rejection to tower water at or near wet-bulb temperatures. Air-cooled chillers must reject heat at the dry-bulb temperature, and thus have a lower average reverse-Carnot cycle effectiveness. Large office buildings, hospitals, and schools typically use one or more cooling towers as part of their air conditioning systems. Generally, industrial cooling towers are much larger than HVAC towers.

HVAC use of a cooling tower pairs the cooling tower with a water-cooled chiller or water-cooled condenser. A ton of air-conditioning is the removal of 12,000 Btu/hour (3517 W). The equivalent ton on the cooling tower side actually rejects about 15,000 Btu/hour (4396 W) due to the heat-equivalent of the energy needed to drive the chiller’s compressor. This equivalent ton is defined as the heat rejection in cooling 3 U.S. gallons/minute (1,500 pound/hour) of water 10 °F (5.56 °C), which amounts to 15,000 Btu/hour, or a chiller coefficient-of-performance (COP) of 4.0. This COP is equivalent to an energy efficiency ratio (EER) of 13.65.

Industrial cooling towers

Industrial cooling towers can be used to remove heat from various sources such as machinery or heated process material. The primary use of large, industrial cooling towers is to remove the heat absorbed in the circulating cooling water systems used in power plants, petroleum refineries, petrochemical plants, natural gas processing plants, food processing plants, semi-conductor plants, and other industrial facilities. The circulation rate of cooling water in a typical 700 MW coal-fired power plant with a cooling tower amounts to about 71,600 cubic metres an hour (315,000 U.S. gallons per minute) and the circulating water requires a supply water make-up rate of perhaps 5 percent (i.e., 3,600 cubic metres an hour).

If that same plant had no cooling tower and used once-through cooling water, it would require about 100,000 cubic metres an hour and that amount of water would have to be continuously returned to the ocean, lake or river from which it was obtained and continuously re-supplied to the plant. Furthermore, discharging large amounts of hot water may raise the temperature of the receiving river or lake to an unacceptable level for the local ecosystem. Elevated water temperatures can kill fish and other aquatic organisms.

A cooling tower serves to dissipate the heat into the atmosphere instead and wind and air diffusion spreads the heat over a much larger area than hot water can distribute heat in a body of water. Some coal-fired and nuclear power plants located in coastal areas do make use of once-through ocean water. But even there, the offshore discharge water outlet requires very careful design to avoid environmental problems.

Petroleum refineries also have very large cooling tower systems. A typical large refinery processing 40,000 metric tonnes of crude oil per day (300,000 barrels per day) circulates about 80,000 cubic metres of water per hour through its cooling tower system.

The world’s tallest cooling tower is the 200 metre tall cooling tower of Niederaussem Power Plant.

Cooling Tower Heat transfer methods

With respect to the heat transfer mechanism employed, the main types are:

Wet cooling towers or simply cooling towers operate on the principle of evaporation. The working fluid and the evaporated fluid (usually H2O) are one and the same.

Dry coolers operate by heat transfer through a surface that separates the working fluid from ambient air, such as in a heat exchanger, utilizing convective heat transfer. They do not use evaporation.

Fluid coolers are hybrids that pass the working fluid through a tube bundle, upon which clean water is sprayed and a fan-induced draft applied. The resulting heat transfer performance is much closer to that of a wet cooling tower, with the advantage provided by a dry cooler of protecting the working fluid from environmental exposure.

In a wet cooling tower, the warm water can be cooled to a temperature lower than the ambient air dry-bulb temperature, if the air is relatively dry. As ambient air is drawn past a flow of water, evaporation occurs. Evaporation results in saturated air conditions, lowering the temperature of the water to the wet bulb air temperature, which is lower than the ambient dry bulb air temperature, the difference determined by the humidity of the ambient air.

To achieve better performance (more cooling), a medium called fill is used to increase the surface area between the air and water flows. Splash fill consists of material placed to interrupt the water flow causing splashing. Film fill is composed of thin sheets of material upon which the water flows. Both methods create increased surface area.

Air flow generation methods

With respect to drawing air through the tower, there are three types of cooling towers:

Natural draft, which utilizes buoyancy via a tall chimney. Warm, moist air naturally rises due to the density differential to the dry, cooler outside air. Warm moist air is less dense than drier air at the same pressure. This moist air buoyancy produces a current of air through the tower.

Mechanical draft, which uses power driven fan motors to force or draw air through the tower.

  • Induced draft: A mechanical draft tower with a fan at the discharge which pulls air through tower. The fan induces hot moist air out the discharge. This produces low entering and high exiting air velocities, reducing the possibility of recirculation in which discharged air flows back into the air intake. This fan/fin arrangement is also known as draw-through.

  • Forced draft: A mechanical draft tower with a blower type fan at the intake. The fan forces air into the tower, creating high entering and low exiting air velocities. The low exiting velocity is much more susceptible to recirculation. With the fan on the air intake, the fan is more susceptible to complications due to freezing conditions. Another disadvantage is that a forced draft design typically requires more motor horsepower than an equivalent induced draft design. The forced draft benefit is its ability to work with high static pressure. They can be installed in more confined spaces and even in some indoor situations. This fan/fill geometry is also known as blow-through.

Fan assisted natural draft. A hybrid type that appears like a natural draft though airflow is assisted by a fan.
Hyperboloid (hyperbolic) cooling towers have become the design standard for all natural-draft cooling towers because of their structural strength and minimum usage of material. The hyperboloid shape also aids in accelerating the upward convective air flow, improving cooling efficiency. They are popularly associated with nuclear power plants. However, this association is misleading, as the same kind of cooling towers are often used at large coal-fired power plants as well. Similarly, not all nuclear power plants have cooling towers, instead cooling their heat exchangers with lake, river or ocean water.

1 Like