CANopen communication protocol

CANopen is a communication protocol and device profile specification for embedded systems used in automation. In terms of the OSI model, CANopen implements the layers above and including the network layer. The CANopen standard consists of an addressing scheme, several small communication protocols and an application layer defined by a device profile.

The communication protocols have support for network management, device monitoring and communication between nodes, including a simple transport layer for message segmentation/desegmentation. The lower level protocol implementing the data link and physical layers is usually Controller Area Network (CAN), although devices using some other means of communication (such as Ethernet Powerlink, EtherCAT) can also implement the CANopen device profile.

Every CANopen device has to implement certain standard features in its controlling software.

A communication unit implements the protocols for messaging with the other nodes in the network.
Starting and resetting the device is controlled via a state machine. It must contain the states Initialization, Pre-operational, Operational and Stopped. The transitions between states are made by issuing a network management (NMT) communication object to the device.

The object dictionary is an array of variables with a 16-bit index. Additionally, each variable can have an 8-bit subindex. The variables can be used to configure the device and reflect its environment, i.e. contain measurement data.

The application part of the device actually performs the desired function of the device, after the state machine is set to the operational state. The application is configured by variables in the object dictionary and the data are sent and received through the communication layer.

Communication models

Different kinds of communication models are used in the messaging between CANopen nodes.

In a master/slave relationship, one CANopen node is designated as the master, which sends or requests data from the slaves. The NMT protocol is an example of a master/slave communication model.

A client/server relationship is implemented in the SDO protocol, where the SDO client sends data (the object dictionary index and subindex) to an SDO server, which replies with one or more SDO packages containing the requested data (the contents of the object dictionary at the given index).

A producer/consumer model is used in the Heartbeat and Node Guarding protocols. In the push-model of producer/consumer, the producer sends data to the consumer without a specific request, whereas in the pull model, the consumer has to request the data from the producer.

Protocols

Network management (NMT) protocols

The NMT protocols are used to issue state machine change commands (e.g. to start and stop the devices), detect remote device bootups and error conditions.

The Module control protocol is used by the NMT master to change the state of the devices. The CAN-frame COB-ID of this protocol is always 0, meaning that it has a function code 0 and node ID 0, which means that every node in the network will process this message. The actual node ID, to which the command is meant to, is given in the data part of the message (at the second byte). This can also be 0, meaning that all the devices on the bus should go to the indicated state.